Conserved Secondary Structures in Aspergillus
نویسندگان
چکیده
BACKGROUND Recent evidence suggests that the number and variety of functional RNAs (ncRNAs as well as cis-acting RNA elements within mRNAs) is much higher than previously thought; thus, the ability to computationally predict and analyze RNAs has taken on new importance. We have computationally studied the secondary structures in an alignment of six Aspergillus genomes. Little is known about the RNAs present in this set of fungi, and this diverse set of genomes has an optimal level of sequence conservation for observing the correlated evolution of base-pairs seen in RNAs. METHODOLOGY/PRINCIPAL FINDINGS We report the results of a whole-genome search for evolutionarily conserved secondary structures, as well as the results of clustering these predicted secondary structures by structural similarity. We find a total of 7450 predicted secondary structures, including a new predicted approximately 60 bp long hairpin motif found primarily inside introns. We find no evidence for microRNAs. Different types of genomic regions are over-represented in different classes of predicted secondary structures. Exons contain the longest motifs (primarily long, branched hairpins), 5' UTRs primarily contain groupings of short hairpins located near the start codon, and 3' UTRs contain very little secondary structure compared to other regions. There is a large concentration of short hairpins just inside the boundaries of exons. The density of predicted intronic RNAs increases with the length of introns, and the density of predicted secondary structures within mRNA coding regions increases with the number of introns in a gene. CONCLUSIONS/SIGNIFICANCE There are many conserved, high-confidence RNAs of unknown function in these Aspergillus genomes, as well as interesting spatial distributions of predicted secondary structures. This study increases our knowledge of secondary structure in these aspergillus organisms.
منابع مشابه
Examining the Evolution of the Regulatory Circuit Controlling Secondary Metabolism and Development in the Fungal Genus Aspergillus
Filamentous fungi produce diverse secondary metabolites (SMs) essential to their ecology and adaptation. Although each SM is typically produced by only a handful of species, global SM production is governed by widely conserved transcriptional regulators in conjunction with other cellular processes, such as development. We examined the interplay between the taxonomic narrowness of SM distributio...
متن کاملPhylogenomic analysis of non-ribosomal peptide synthetases in the genus Aspergillus.
Fungi from the genus Aspergillus are important saprophytes and opportunistic human fungal pathogens that contribute in these and other diverse ways to human well-being. Part of their impact on human well-being stems from the production of small molecular weight secondary metabolites, which may contribute to the ability of these fungi to cause invasive fungal infections and allergic diseases. In...
متن کاملDifferential Support of Aspergillus fumigatus Morphogenesis by Yeast and Human Actins
The actin cytoskeleton is highly conserved among eukaryotes and is essential for cellular processes regulating growth and differentiation. In fungi, filamentous actin (F-actin) orchestrates hyphal tip structure and extension via organization of exocytic and endocytic processes at the hyphal tip. Although highly conserved, there are key differences among actins of fungal species as well as betwe...
متن کاملThe Aspergillus nidulans MAPK Module AnSte11-Ste50-Ste7-Fus3 Controls Development and Secondary Metabolism
The sexual Fus3 MAP kinase module of yeast is highly conserved in eukaryotes and transmits external signals from the plasma membrane to the nucleus. We show here that the module of the filamentous fungus Aspergillus nidulans (An) consists of the AnFus3 MAP kinase, the upstream kinases AnSte7 and AnSte11, and the AnSte50 adaptor. The fungal MAPK module controls the coordination of fungal develop...
متن کاملRsmA Regulates Aspergillus fumigatus Gliotoxin Cluster Metabolites Including Cyclo(L-Phe-L-Ser), a Potential New Diagnostic Marker for Invasive Aspergillosis
Dimeric basic leucine zipper (bZIP) proteins are conserved transcriptional enhancers found in all eukaryotes. A recently reported and novel function for bZIPs is association of these proteins with secondary metabolite production in filamentous fungi. In particular a Yap-like bZIP termed RsmA (restorer of secondary metabolism A) was identified in Aspergillus nidulans that positively regulates th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008